Haplogroup "R"

Supposedly The White peoples Genes


Haplogroup R-M207 (R1)





In molecular evolution, a haplogroup is a group of similar haplotypes that share a common ancestor having the same single nucleotide polymorphism (SNP) mutation in all haplotypes. Haplogroup R-M207 is a Y-chromosome DNA haplogroup. It marks a major split in paleolithic lineages some descendant lines are common throughout Europe, Central Asia and South Asia, and also common in parts of the West Asia and Africa. Others are primarily from West Asia and South Asia. This line is a descendant of haplogroup P-M45.

This haplogroup is believed to have arisen around 20,000-34,000 years ago (Karafet 2008), somewhere in Central Asia or South Asia, where its ancestor Haplogroup P-M45 is most often found at polymorphic frequencies (Wells 2001).

The two currently defined subclades are R-M173 and R-M479. Haplogroup R-M173 is estimated to have arisen during the height of the Last Glacial Maximum (LGM), about 18,500 years ago, most likely in southwestern Asia (Underhill 2009).

Y-haplogroup R-M207 is found throughout all continents, but is fairly common throughout Europe, South Asia and Central Asia. Small frequencies are found in Malaysia, Indonesia, Philippines, and Indigenous Australians (Kayser 2003). It also occurs in Caucasus, Near East, West China, Siberia and some parts of Africa.





R1a and R1a1a are believed to have originated somewhere within Eurasia, most likely in the area from Eastern Europe to South Asia. Several recent studies have proposed that South Asia is the most likely region of origin. But on the other hand, as will be discussed below, some researchers continue to treat modern Indian R1a as being largely due to immigration from the Central Eurasian steppes or Southwestern Asia.

R1a has been found in high frequency at both the eastern and western ends of its core range, for example in India and Tajikistan on the one hand, and Poland on the other. Throughout all of these regions, R1a is dominated by the R1a1a (R-M17 or R-M198) sub-clade.




In South Asia R1a1a has often been observed with high frequency in a number of demographic groups. The main two subclades of R1a1a are R1a1a* and R1a1a7. R1a1a7 is positive for M458 an SNP that separate it from the rest of R1a1a. It is significant because M458 is a European marker and the epicenter is Poland. M458 marker is rare in India.

In India, high percentage of this haplogroup is observed in West Bengal Brahmins (72%) to the east, Konkanastha Brahmins (48%) to the west, Khatris (67%) in north and Iyenger Brahmins (31%) of south. It has also been found in several South Indian Dravidian-speaking Adivasis including the Chenchu (26%) and the Valmikis of Andhra Pradesh and the Kallar of Tamil Nadu suggesting that M17 is widespread in Tribal Southern Indians.



Besides these, studies show high percentages in regionally diverse groups such as Manipuris (50%) to the extreme North East and in Punjab (47%) to the extreme North West.

In Pakistan it is found at 71% among the Mohanna tribe in Sindh province to the south and 46% among the Baltis of Gilgit-Baltistan to the north. While 13% of Sinhalese of Sri Lanka were found to be R1a1a (R-M17) positive.

Hindus of Terai region of Nepal show it at 69%.

In Afghanistan, R1a1a (R-M17) is found at 51.02% among the Pashtuns (the largest ethnic group in Afghanistan) and 30.36% among the Tajiks, but it is less frequent among the Hazaras (6.67%) and the Turkic-speaking Uzbeks (17.65%).



R1a1 among others European haplogrupes

In Europe, R1a, again almost entirely in the R1a1a sub-clade, is found at highest levels among peoples of Eastern European descent (Sorbs, Poles, Russians and Ukrainians; 50 to 65%). In the Baltic countries R1a frequencies decrease from Lithuania (45%) to Estonia (around 30%). Levels in Hungarians have been noted between 20 and 60%.

There is a significant presence in peoples of Scandinavian descent, with highest levels in Norway and Iceland, where between 20 and 30% of men are in R1a1a. Vikings and Normans may have also carried the R1a1a lineage westward; accounting for at least part of the small presence in the British Isles. In East Germany, where Haplogroup R1a reaches a peak frequency in Rostock at a percentage of 31.3%, it averages between 20%-30%.

Haplogroup R1a1a was found at elevated levels amongst a sample of the Israeli population who self-designated themselves as Ashkenazi Jews, possibly reflecting gene flow into Ashkenazi populations from surrounding Eastern European populations, over a course of centuries. This haplogroup finding was apparently consistent with the latest SNP microarray analysis which argued that up to 55 percent of the modern Ashkenazi genome is specifically traceable to Europe. Ashkenazim were found to have a significantly higher frequency of the R-M17 haplogroup Behar reported R-M17 to be the dominant haplogroup in Ashkenazi Levites (52%), although rare in Ashkenazi Cohanim (1.3%) and Israelites (4%).

In Southern Europe R1a1a is not common amongst the general population, but it is widespread in certain areas. Significant levels have been found in pockets, such as in the Pas Valley in Northern Spain, areas of Venice, and Calabria in Italy. The Balkans shows lower frequencies, and significant variation between areas, for example >30% in Slovenia, Croatia and Greek Macedonia, but <10% in Albania, Kosovo and parts of Greece.

The remains of a father and his two sons, from an archaeological site discovered in 2005 near Eulau (in Saxony-Anhalt, Germany) and dated to about 2600 BCE, tested positive for the Y-SNP marker SRY10831.2. The R1a1 clade was thus present in Europe at least 4600 years ago, in association with one site of the widespread Corded Ware culture.

In 2005 four multiple burials were discovered near Eulau, Germany. The 4,600-year-old graves contained groups of (Black - identified by cranial analysis) adults and children buried facing each other. Skeletal and artifactual evidence and the simultaneous interment of the individuals suggest the supposed families fell victim to a violent event. Genetic analysis of four bodies found in a 4,600-year-old grave shows that they belonged to a mother, a father and their two sons, who were buried together in one another's arms.



The Black family as they were found.





Central and Northern Asia

R1a1a frequencies are patchy in Central Asia. This variation is possibly a consequence of population bottlenecks in isolated areas and the movements of Scythians in ancient times and later the Turco-Mongols.

High frequencies of R1a1a (R-M17 or R-M198; 50 to 70%) are found among the Ishkashimis, Khujand Tajiks, Panjakent Tajiks, Turkic-speaking Kyrgyzs, and in several peoples of Russia's Altai Republic, but frequencies are relatively lower (16 to 25%) among the Dushanbe Tajiks, Samarkand Tajiks, Yaghnobis and Shughnis.

Although levels are comparatively low amongst some Turkic-speaking groups (e.g. Turks, Azeris, Kazakhs, Yakuts), levels are high (19 to 28%) in certain Turkic or Mongolic-speaking groups of Northwestern China, such as the Bonan, Dongxiang, Salar, and Uyghurs.

In Eastern Siberia, R1a1a is found among certain indigenous ethnic groups including Kamchatkans and Chukotkans, and peaking in Itel'man at 22%.
Middle East and Caucasus

R1a1a has been found in various forms, in most parts of Western Asia, in widely varying concentrations, from almost no presence in areas such as Jordan, to much higher levels in parts of Kuwait, Turkey and Iran.





The Shimar (Shammar) Bedouin tribe in Kuwait show the highest frequency in the Middle East at 43%.















Wells et al. (2001), noted that in the western part of the country, Iranians show low R1a1a levels, while males of eastern parts of Iran carried up to 35% R1a. Nasidze et al. (2004) found R1a in approximately 20% of Iranian males from the cities of Tehran and Isfahan. Regueiro et al. (2006), in a study of Iran, noted much higher frequencies in the south than the north.

Turkey also shows high but unevenly distributed R1a levels amongst some sub-populations. For example Nasidze et al. (2005) found relatively high levels amongst two Kurdish groups of Turkey, the Kurmanji (13%) and Zazaki (26%).

Further to the north of these Middle Eastern regions on the other hand, R1a levels start to increase in the Caucasus, once again in an uneven way. Several populations studied have shown no sign of R1a, while highest levels so far discovered in the region appears to belong to speakers of the Karachay-Balkar language amongst whom about one quarter of men tested so far are in haplogroup R1a1a.




Possible place of origin Southwest Asia
Ancestor R1
Descendants R1b1a (R-P297), R1b1b (R-M335), R1b1c (R-V88)
Defining mutations 1. M343 defines R1b in the broadest sense
P25 defines R1b1, making up most of R1b, and is often used to test for R1b
In some cases, major downstream mutations such as M269 are used to identify R1b, especially in regional or out-of-date studies
Highest frequencies Western Europe, Northern Cameroon, Hazara, Bashkirs






In human genetics, Haplogroup R1b is the most frequently occurring Y-chromosome haplogroup in Western Europe, parts of central Eurasia (for example Bashkortostan), and in parts of sub-Saharan Central Africa (for example around Chad and Cameroon). R1b is also present at lower frequencies throughout Eastern Europe, Western Asia, Central Asia, and parts of South Asia and North Africa.







Due to European emigration it also reaches high frequencies in the Americas and Australia. While Western Europe is dominated by the R1b1a2 (R-M269) branch of R1b, the Chadic-speaking area in Africa is dominated by the branch known as R1b1c (R-V88). These represent two very successful "twigs" on a much bigger "family tree."


Ireland = 79%
Netherlands = 53.5%
Italy = 49%
Germany = 44.5%
  England = 67%
France = 61%
Belgium = 59.5%
Denmark = 44.5%






R1b1c is found in northern Cameroon in west central Africa at a very high frequency, where it is considered to be caused by a pre-Islamic movement of people from Eurasia.

Suggestive results from other studies which did not test for the full range of new markers discovered by Cruciani et al. have also been reported, which might be in R-V88.

Wood et al. reported high frequencies of men who were P25 positive and M269 negative, amongst the same north Cameroon area where Cruciani et al. reported high R-V88 levels. However they also found such cases amongst 3% (1/32) of Fante from Ghana, 9% (1/11) of Bassa from southern Cameroon, 4% (1/24) of Herero from Namibia, 5% (1/22) of Ambo from Namibia, 4% (4/92) of Egyptians, and 4% (1/28) of Tunisians.






Luis et al. found the following cases of men M173 positive (R1), but negative for M73 (R1b1b1), M269 (R1b1b2), M18 (R1b1a1, a clade with V88, M18 having been discovered before V88) and M17 (R1a1a): 1 of 121 Omanis, 3 of 147 Egyptians, 2 of 14 Bantu from southern Cameroon, and 1 of 69 Hutu from Rwanda.
Pereira et al.


(2010) In a study of several Saharan Tuareg populations, found one third of 31 men tested from near Tanut in Niger to be in R1b.








Historical note

The DNA tests that assisted in the identification of Czar Nicholas II of Russia found that he had haplogroup R1b.




R1b1c1 (R-M18)

R1b1c1 is a sub-clade of R-V88 which is defined by the presence of SNP marker M18. It has been found only at low frequencies in samples from Sardinia and Lebanon.




R2 (R-M124)


Haplogroup R-M124 is a Y-chromosome haplogroup characterized by genetic markers M124, P249, P267, L266, and is mainly found in South Asia, parts of Central and West Asia.

Haplogroup R-M124, along with haplogroups H, L, R1a1, and J2, forms the majority of the South Asian male population. The frequency is around 10-15% in India and Sri Lanka and 7-8% in Pakistan. Its spread within South Asia is very extensive, ranging from Baluchistan in the west to Bengal in the east; Hunza in the north to Sri Lanka in the south.

North Indian Muslims have a frequency of 11%(Sunni) and 9%(Shia), while Dawoodi Bohra Muslim in the western state of Gujarat have a frequency of 16% and Mappla Muslims of South India have a frequency of 5%. The R-M124 haplogroup is also found in 14% of the Burusho people who speak the language isolate called Burushaski.

Some of the other studies like Bamshad et al., 2001, Kivisild et al., 2003 found Haplogroup 1 (the old representation for non-R1a1 Haplogroup R subclades) at around 40% among Telugus of coastal Andhra Pradesh. The identification of this Haplogroup with R-M124 is confirmed from Sanghamitra Sahoo et al., 2006 study which observed R-M124 ranging from 35% to 55% among non-Brahmin castes of this region.

Haplogroup R-M124 comprises 53% of Y-chromosomes among Sinti, a subgroup of the Romani people living in Germany who were relocated to Central Asia, however the sample size was only 15 individuals. This Romani branch has its ancient roots in India.

Central Asia

In Central Asia, Tajikistan shows Haplogroup R-M124 at 6%, while the other '-stan' states vary around 2%. Bartangis of Tajikistan have a high frequency of R-M124 at about 17%, Ishkashimi at 8%, Khojant at 9% and Dushanbe at 6%.

Specifically, Haplogroup R-M124 has been found in approximately 7.5% (4/53) of recent Iranian emigrants living in Samarkand,[10] 7.1% (7/99) of Pamiris,[10] 6.8% (3/44) of Karakalpaks, 5.1% (4/78) of Tajiks, 5% (2/40) of Dungans in Kyrgyzstan, 3.3% (1/30) of Turkmens, 2.2% (8/366) of Uzbeks, and 1.9% (1/54) of Kazakhs.

West Asia

One study has found Haplogroup R-M124 at an unusually high frequency of 44% (11/25) among Kurmanji speakers (Kurmanjs) in Georgia, but at a much lower frequency of 8% (7/87) among Kurmanjs in Turkey.

An R-M124 frequency of 15.8% was observed among Chechens. R-M124 has been found in approximately 8% (2/24) of a sample of Ossetians from Alagir.

In the Caucasus, around 16% of Mountain Jews, 8% of Balkarians,[14] 6% of Kalmyks,[15] 3% of Azerbaijanis,[12] 2.6% of Kumyks,[16] 2.4% of Avars,[16] 2% of Armenians, and 1% to 6% of Georgians belong to the R-M124 haplogroup. Approximately 1% of Turks and 1% to 3% of Iranians also belong to this haplogroup.

Arab World

In the R2-M124-WTY and R-Arabia Y-DNA Projects, Haplogroup R-M124 has appeared in the following Arab countries: Kuwait (3 clusters), Saudi Arabia (2 clusters), United Arab Emirates (1 cluster), Syrian Arab Republic (1 cluster), and Tunisia (1 cluster).

Thus, Haplogroup R-M124 has been observed among Arabs at low frequencies in 11 countries/territories (Egypt, Jordan, Kuwait, Lebanon, Palestine, Qatar, Saudi Arabia, Syria, Tunisia, United Arab Emirates, and Yemen) of the 22 Arab countries/territories so far.




Haplogroup "R" (new)



Haplogroup R, the ancestral clade to R1 and R2, appeared on the Central Asian Steppes around 35,000 to 30,000 years ago.
R1, sister clade to R2, moved to the West from the Central Asian Steppes around 35,000 to 30,000 years ago. R1 pockets were established, from where R1a and R1b emerged.

R2a [R-M124] made its first entry into the Indian sub-continent around 25,000 years ago. The routes taken are not clear, although the Indus and Ganges rivers are possible theories put forward. There could, of course, have been multiple immigrations of this haplogroup into the Indian sub-continent, both in the Paleolithic and the Neolithic.

At least 90% of R-M124 individuals are located in the Indian sub-continent. It is also reported in Caucasus and Central Asia.

Haplogroup R2a is present both in Dravidian and other Indian populations, meaning that R2a has a pan-Indian presence, and not restricted to any linguistic group.

Haplogroup R2a has a more significant presence in middle and upper castes. The frequencies of R2a seem to mirror the frequencies of R1a (i.e. both lineages are strong and weak in the same social and linguistic subgroups). This may indicate that both R1a and R2a moved into India at roughly the same time or cohabited, although more research is needed.

R1a1 and R2a haplogroups indicate demographic complexity that is inconsistent with a recent single history and is not inconsistent with a more proximal Central Asian input of the R2a haplogroup in the upper castes. R2a has a particularly strong presence in the Indian states of West Bengal, Uttar Pradesh and Gujarat, and in the area of Mumbai (Bombay).

The paper claims that there is no evidence that Central Asia was the source of the R1a and R2a lineages in India. The theory that Central Asia could have been the recipient of the two lineages from India should not be ruled out. (Comment: The Dravidian Albinos moving to Central Asia from India accounts for this). In addition, the data are not inconsistent with complex exchanges of this haplogroup between Central Asia and the Indian sub-continent, with the latter being both the source and the recipient at different times.


Haplogroup K-M526 (Y-DNA).

K(xLT) is the ancestral haplogroup to haplogroups K1, K2, K3, K4, M, NO, P (which contains haplogroups Q and R), and S (formerly MNOPS). Possible time of origin 35,000-45,000 years BP in South or Central Asia.

Haplogroup P-M45 (Y-DNA) is the parent of haplogroups (P*, Q, R). It is believed to have arisen 27,000-41,000 years BP in Central Asia - South Asia.

This haplogroup contains the patrilineal ancestors of most Europeans and almost all of the indigenous peoples of the Americas. It also contains approximately one third to two thirds of the males among various populations of Central Asia and Southern Asia.

Haplogroup R-M207 (Y-DNA)
In human population genetics, haplogroups define the major lineages of direct paternal (male) lines back to a shared common ancestor in Africa.

haplogroup R-M207 is a Y-chromosome DNA haplogroup. It marks a major split in paleolithic lineages some descendant lines are common throughout Europe, Central Asia and South Asia, and also common in parts of the West Asia and Africa. Others are primarily from West Asia and South Asia. This line is a descendant of haplogroup P-M45.
This haplogroup is believed to have arisen around 20,000-34,000 years ago,(Karafet 2008) somewhere in Central Asia or South Asia, where its ancestor Haplogroup P-M45 is most often found at polymorphic frequencies.(Wells 2001)

The two currently defined subclades are R-M173 and R-M479. Haplogroup R-M173 is estimated to have arisen during the height of the Last Glacial Maximum (LGM), about 18,500 years ago, most likely in southwestern Asia.

Y-haplogroup R-M207 is found throughout all continents, but is fairly common throughout Europe, South Asia and Central Asia. Small frequencies are found in Malaysia, Indonesia, Philippines, and Indigenous Australians.(Kayser 2003) It also occurs in Caucasus, Near East, West China, Siberia and some parts of Africa. It has a high frequency in the Native Americans due primarily to the introduction of Eurasian lineages in the last 500 years.


Haplogroup R-M173 (Y-DNA)

In human genetics, Haplogroup R-M173 is a Y-chromosome DNA haplogroup, a subgroup of haplogroup R, associated with the M173 mutation. It is dominated in modern populations by two Eurasian clades, R-M240 and R-M343, which together are found all over Eurasia except in Southeast Asia and East Asia. However, other types of R-M173, less well-known and undefined so far by any identified SNP, and therefore referred to collectively simply as R-M173*, have been reported in the Americas, all over Asia and Oceania.

In the Americas, it is not a pre-Colombian founding lineage. However, it is the second most common haplogroup in Indigenous peoples of the Americas following haplogroup Q-M242, and spreads specially in Algonquian peoples from United States and Canada.

The origins of R-M173 remain unclear. Haplogroup R-M207 is part of the family of haplogroup P-M45, and a sibling clade, therefore, of haplogroup Q-M242, which is common in the Americas and Eurasia. In Eurasia, Q-M242's geography includes eastern areas such as Siberia. Based on these ancestral lineages, an inferred origin for R-M173 to the east of the West Asia. For example, Kivisild 2003 believes the evidence "suggests that southern and western Asia might be the source of this haplogroup." and "Given the geographic spread and STR diversities of sister clades R1 and R2, the latter of which is restricted to India, Pakistan, Iran, and southern central Asia, it is possible that southern and western Asia were the source for R1 and R1a differentiation." Soares 2010 felt in their review of the literature, that the case for South Asian origins is strongest, with the Central Asian origin argued by (Wells 2001) being also worthy of consideration.

Haplogroup R-M173 is fairly common throughout Europe, South Asia and Central Asia. It also occurs in Africa, Near East and Native Americans from North America. Low frequencies in Siberia, Malay Archipelago and Indigenous Australians.

In Indigenous Americans groups, R-M173 is the most common haplogroup after the various Q-M242, especially in North America in Ojibwe people at 79%, Chipewyan 62%, Seminole 50%, Cherokee 47%, Dogrib 40% and Papago 38%. The decreasing gradient of haplogroup R-M207 from Northeastern to Southwestern North America is evidence that this results from European admixture.









Oculocutaneous Albinism type 1 (OCA1)

OCA1 is caused by an alteration of the tyrosinase gene, and can occur in two variations. The first is OCA1a, and means that the organism cannot develop pigment at all. The hair is usually white (often translucent) and the skin very pale. Vision usually ranges from 20/200 to 20/400. The second is OCA1b, which has several subtypes itself. Some individuals with OCA1b can tan and also develop pigment in the hair. One subtype of OCA1b is called OCA1b TS (temperature sensitive), where the tyrosinase can only function below a certain temperature, which causes the body hair in cooler body regions to develop pigment (i.e. get darker). (An equivalent mutation produces the coat pattern in Siamese cats. Another variant of OCA1b, called Albinism, yellow mutant type (OMIM: 606952) is more common among the Amish than in other populations, and results in blonde hair and the eventual development of skin pigmentation during infancy, though at birth is difficult to distinguish from other types.






Oculocutaneous Albinism type 2 (OCA2)

The most common type of albinism, is caused by mutation of the P gene. People with OCA2 generally have more pigment and better vision than those with OCA1, but cannot tan like some with OCA1b. A little pigment can develop in freckles or moles. People with OCA2 usually have fair skin but often not as pale as OCA1, and pale blonde to golden, strawberry blonde, or even brown hair, and most commonly blue eyes.





These three sisters all have the EXACT same haplogroup.
The only difference is that the one in the middle has a damaged "P" gene.
  These two brothers have the EXACT same haplogroup.
The only difference is that the one on the right has a damaged "P" gene.



This brother and his two sisters all have the EXACT same haplogroup.
The only difference is that the one in the middle has a Undamaged "P" gene.



There is only one way where these two men could be in the same genetic group.


One of them "MUST" have a damaged "P" gene!




European Gene locator link




Distribution of European Y-chromosome DNA (Y-DNA) haplogroups by region in percentage

Last update : February 2010 (Armenians, Azeris, Basques, Bashkirs, Bosnians, Cantabrians, Cypriots, Galicians, Kurds, Macedonians)

Human Y-chromosome DNA can be divided in genealogical groups sharing a common ancestor. These are called haplogroups . To know what ancient ethnic group is associated with each haplogroup, please check European Haplogroups : origins, geographic spread and relation to ethnic groups .

Note that figures are only indicative. Several sources were used and averages recalculated by merging the data available. Being approximations, numbers were rounded up to 0.5%. Frequencies inferior to 0.25% are indicated as 0%. A non-exhaustive list of the sources used for this page can be found here .

Note: the number in each ROW indicates a percentage of the population, relative to each haplogroup.


Turkey is the only country that includes a sizeable percentage of Asian and African haplogroups not listed in this table (A, ExE1b1b, C, H, L, O, R2) representing 8.5% of the total. Haplogroup L alone makes up 4% of the Turkish population.

The division of Italy is as follows: North Italy is everything until Liguria and Emilia-Romagna; Central Italy comprises Tuscany, Marche, Umbria, Latium and Abruzzo. South Italy is everything else to the south, except Sardinia and Sicily, which have been made into separate categories due to their specific history and relative geographic isolation. Sources for the Italian regional breakdown .

Our division of Germany was made this way : North Germany includes the Schleswig-Holstein, Lower Saxony (+ Hamburg and Bremen) and Mecklenburg-Western Pomerania. West Germany is the Rhineland, Hesse and Saarland. South Germany is Baden-Württemberg and Bavaria. East Germany is composed of Brandenburg, Berlin, Saxony-Anhalt, Saxony and Thuringia.

The sample size for each country or region is at least of 100. Italy, Germany, England and Ireland have over 2000 samples each, France and Spain over 1000, Portugal over 900, Belgium over 750, the Netherlands, Finland and Hungary over 650, Greece and Turkey over 500.

Surrounding regions



Additional information

The percentages of haplogroups H1, H3 and U5 is given in addition to the total for H and U. This is useful to assess the proportion of Paleolithic European (Cro-Magnon) lineages, as opposed to later arrivals.

The "Other" category includes mostly the older haplogroups N, R, pre-HV and HV, but also occasionally a few African (L) or Asian haplogroups (A, B, C, D, M, Z).

The largest sample sizes in this data base are Germany (n = 2610), England (n = 1577), Scotland (n = 1413), Ireland (n = 1397), France (n = 878), Italy (n = 808), Norway (n = 703), Finland (n = 580), and Iceland (n = 511). Each country has at least 100 samples.



Ancient Y chromosome studies

From Dienekes Pontikos



(Last Updated 12 Oct 2013) .

Neolithic Linearbandkeramik from Derenburg [2 F*(xG,H,I,J,K), 1 G2a3]

Neolithic Spain [5 G2a, 1 E-V13]
Hongshan culture Neolithic China  [1 C, 1 O3, 4 N1(?N1a,N1c)]
Longshan culture Neolithic China [3 N1(xN1a,N1c)]
Xiaoheyan culture Neolithic China [12 N1(xN1a,N1c)]
Neolithic Ötzi from the Alps [G2a4]

Prehistoric Alaskan [Q3]
Prehistoric South Siberians from Krasnoyarsk and here [10 R1a1, 1 C(xC3)]

Neolithic southwestern France from Treilles [20 G2a, 2 I2a]
Neolithic Megalithic France from la Pierre Fritte [2 I2a1]
Neolithic Bell Beaker from Kromsdorf Germany [2 R1b]

Bronze Age from West Liao-River northern China [N-M231, O3-M122]
Lower Xiajiadian Bronze Age West Liao-River northern China  [3 N1(xN1a,N1c, 2 O3]
Upper Xiajiadian Bronze Age West Liao-River northern China [1 C3e, 3 N1c, 1 N1(xN1a,N1c), 2 O3a, 2 O3a3c]
Northern Steppe culture Bronze Age West Liao-River northern China [12 C3e]
Bronze Age from Tarim basin in Xiaohe [7 R1a1a]

Prehistoric Paleo-Eskimo from Greenland [1 Q1a]
Ancient Chinese from the Yangtze River [14 O1, 3 O2a, 7 O3*, 5 O3d, 1 O3e, 18 undetermined]
Ancient nomads from Pengyang China [4 Q]
Eneolithic Corded Ware Germans [3 related R1a]

Bronze Age Lichtenstein Cave in Germany [estimated presence I1b2*, R1a1, R1b1c]
Ancient Mongolian [presence of Tat-C in Yakut and Xiongnu]
Ancient Egyin Gol Mongolians and here and here [Y-STR in Table 2 of second study; N3, Q, C]

Ancient Mongolian Xiongnu [1 R1a1]
New Kingdom Egyptian pharaoh  Ramesses III  [1 E1b1a]
Aboriginals from Canary Islands [E-M78, E-M81, J-M267, E-M33, I-M170, K-M9, P-M45, R-M269]
Late Antique Basques [4 I, 2 R1b3d, 19 R1(xR1a1), 2 R-M173]
Late Antique Imperial Roman from Bavaria [2 R1b, 2 I1, 2 E1b1b, 2 I1/G2a]
Medieval Hungarians [Two Tat-C out of four]
Medieval Germans from Ergolding, Bavaria, Germany [4 R1b (two siblings), 2 G2a]

Medieval Germans (?) from Usedom, Mecklenburg-Vorpommern, Germany [E1b1b, R1a1a7]

Medieval Swedes from Stockholm [2 I1, probably related]

Recent Frozen Yakuts [8 N1c, 5 non-N1c]

Human remains excavated in a Spanish funeral cave dating from the beginning of the fifth millennium B.C. [G2a and E1b1b1a1b].

A European population in Minoan Bronze Age Crete [The Minoan mtDNA haplotypes resembled those of the European populations. The majority of Minoans were classified in haplogroups H (43.2%), T (18.9%), K (16.2%) and I (8.1%). Haplogroups U5A, W, J2, U, X and J were each identified in a single individual]


No published Y-dna for ancient Crete/Minoan


Look-up mtDNA Haplogroup H at Wiki:

In human mitochondrial genetics, Haplogroup H is a human mitochondrial DNA (mtDNA) haplogroup that likely originated in Southwest Asia 20,000-25,000 YBP.

Haplogroup H is a descendant of haplogroup HV. The Cambridge Reference Sequence (CRS), the human mitochondrial sequence to which all other sequences are compared, belongs to haplogroup H2a2a. Several independent studies conclude that haplogroup H probably evolved in West Asia c. 25,000 years ago. It was carried to Europe by migrations c. 20-25,000 years ago, and spread with population of the southwest of the continent. Its arrival was roughly contemporary with the rise of the Gravettian culture. The spread of subclades H1, H3 and the sister haplogroup V reflect a second intra-European expansion from the Franco-Cantabrian region after the last glacial maximum, c. 13,000 years ago. However, any statements concerning the geographic origin of this or any other haplogroup are highly speculative and considered by most population geneticists to be 'story telling' and outside the domain of science. Furthermore, inferring close associations between a haplogroup and a specific archaeological culture can be equally problematic.

In July 2008 ancient mtDNA from an individual called Paglicci 23, whose remains were dated to 25,000 years ago and excavated from Paglicci Cave (Apulia, Italy), were found to be identical to the Cambridge Reference Sequence in HVR1. This once was believed to indicate haplogroup H, but researchers now recognize that CRS can also appear in U or HV.

Haplogroup H is the most common mtDNA haplogroup in Europe. Haplogroup H is found in approximately 41% of native Europeans. The haplogroup is also common in North Africa and the Middle East. The majority of the European populations have an overall haplogroup H frequency of 40%–50%. Frequencies decrease in the southeast of the continent, reaching 20% in the Near East and Caucasus, 17% in Iran, and <10% in the Persian Gulf, Northern India and Central Asia.

Subhaplogroups H1 and H3

Among all these clades, the subhaplogroups H1 and H3 have been subject to a more detailed study and would be associated to the Magdalenian expansion from SW Europe c. 13,000 years ago:

H1 encompasses an important fraction of Western European mtDNA, reaching its local peak among contemporary Basques 27.8% and appearing at a high frequency among other Iberians and North Africans. Its frequency is above 10% in many other parts of Europe (France, Sardinia, British Isles, Alps, large portions of Eastern Europe), and above 5% in nearly all the continent. Its subclade H1b is most common in eastern Europe and NW Siberia. So far, the highest frequency of H1 - 61%- has been found among the Tuareg of the Fezzan region in Libya.